그래프
그래프는 노드(Node)와 간선(Edge)으로 표현되며 이때 노드를 정점(Vertex)이라고도 말한다. 그래프 탐색이란 하나의 노드를 시작으로 다수의 노드를 방문하는 것을 말한다. 또한 두 노드가 간선으로 연결되어 있다면 '두 노드는 인접하다(Adjacent)'라고 표현한다.
프로그래밍에서 그래프는 크게 2가지 방식으로 표현할 수 있다.
인접 행렬 (Adjacency Matrix)
인접 행렬(Adjacency Matrix)은 2차원 배열로 그래프의 연결 관계를 표현하는 방식이다. 위와 같이 연결된 그래프를 인접 행렬로 표현할 때 파이썬에서는 2차원 리스트로 구현할 수 있다. 이 때 연결이 되어 있지 않은 노드끼리는 무한의 비용이라고 작성한다. 실제 코드에서는 논리적으로 정답이 될 수 없는 큰 값 중에서 999999999, 987654321 등의 값으로 초기화하는 경우가 많다.
인접 행렬 방식 예제
INF = 999999999 # 무한의 비용 선언
# 2차원 리스트를 이용해 인접 행렬 표현
graph = [
[0, 7, 5],
[7, 0, INF],
[5, INF, 0]
]
print(graph)
[[0, 7, 5], [7, 0, 999999999], [5, 999999999, 0]]
인접 리스트(Adjacency List)
인접 리스트(Adjacency List)는 리스트로 그래프의 연결 관계를 표현하는 방식이다. 인접 리스트 방식에서는 위 그림처럼 모든 노드에 연결된 노드에 대한 정보를 차례대로 연결하여 저장한다. 인접 리스트는 '연결 리스트'라는 자료구조를 이용해 구현하는데, C++이나 자바와 같은 프로그래밍 언어에서는 별도로 연결 리스트 기증을 위한 표준 라이브러리를 제공한다. 반면에 파이썬은 기본 자료형인 리스트 자료형이 append()와 메소드를 제공하므로, 전통적인 프로그래밍 언어에서의배열과 연결 리스트의 기능을 모두 기본으로 제공한다. 즉, 파이썬으로 인접 리스트를 이용해 그래프를 표현하고자 할 때에도 단순히 2차원 리스트를 이용하면 된다는 것이다.
인접 리스트 방식 예제
# 행(Row)이 3개인 2차원 리스트로 인접 리스트 표현
graph = [[] for _ in range(3)]
# 노드 0에 연결된 노드 정보 저장(노드, 거리)
graph[0].append((1, 7))
graph[0].append((2, 5))
# 노드 1에 연결된 노드 정보 저장(노드, 거리)
graph[1].append((0, 7))
# 노드 2에 연결된 노드 정보 저장(노드, 거리)
graph[2].append((0, 5))
print(graph)
[[(1, 7), (2, 5)], [(0, 7)], [(0, 5)]]
이제 위 두 방식의 차이를 알아보자. 메모리 측면에서 보자면 인접 행렬 방식은 모든 관계를 저장하므로 노드 개수가 많을수록 메모리가 불필요하게 낭비된다. 반면에 인접 리스트 방식은 연결된 정보만을 저장하기 때문에 메모리를 효율적으로 사용한다. 하지만 이와 같은 속성 때문에 인접 리스트 방식은 인접 행렬 방식에 비해 특정한 두 노드가 연결되어 있는지에 대한 정보를 얻는 속도가 느리다. 인접 리스트 방식에서는 연결된 데이터를 하나씩 확인해야 하기 때문이다.
'알고리즘(이코테)' 카테고리의 다른 글
[알고리즘] 정렬(Sorting) (0) | 2024.05.18 |
---|---|
[알고리즘] DFS/BFS - 탐색 알고리즘 DFS/BFS(3) (0) | 2024.05.15 |
[알고리즘] DFS/BFS - 자료구조 기초(1) (0) | 2024.05.11 |
[알고리즘] 구현(Implementation) (0) | 2024.05.09 |
[알고리즘] 그리디(Greedy) (0) | 2024.05.08 |